Decades of data show warming and acidification of Atlantic Ocean

The Atlantic Ocean near Bermuda is now warmer and more acidic than it was 40 years ago, according to international researchers who have been monitoring the area since the late 1980s. Researchers have been collecting monthly data at a site 80 kilometres southeast of Bermuda since 1988, and say the surface ocean in the region has since warmed by about 1°C. The salinity of the water has also increased and the water has lost oxygen, they say, adding that a disproportionate amount of these changes have occurred during the last few years. The researchers say these changes are impacting the ability of some ocean life to survive and thrive in the region.

Journal/conference: Frontiers in Marine Science

Link to research (DOI): 10.3389/fmars.2023.1289931

Organisation/s: Arizona State University, USA

Funder: This research was produced with financial support from the National Science Foundation through the award (NSF OCE 1756105).

Media release

From: Frontiers

Atlantic Ocean near Bermuda is warmer and more acidic than ever, 40 years of observation show

Data spanning 40 years show changes in the subtropical North Atlantic Ocean near the island of Bermuda, including warming by 1°C

[SUMMARY] Oceans are constantly changing. These changes don’t only affect marine life but also have wide-reaching consequences for land dwellers. To document them, monitoring stations in the North Atlantic Ocean have been active for decades. Now, researchers have reported on the latest changes, showing that compared to 40 years ago, the ocean near the island of Bermuda is warmer, saltier, more acidic, and has lost oxygen. Long-term monitoring can provide information about existential challenges societies will face in the near future, the researchers said.

[MAIN TEXT]

Decade-long ocean warming which impacts ocean circulation, a decrease in oxygen levels that contributes to changes in salinification and nutrient supply, and ocean acidification are just some of the challenges the world’s oceans are facing.

In 1988, a comprehensive sustained ocean time-series of observations, called the Bermuda Atlantic Time-series Study (BATS), began at a site about 80 km southeast of the island of Bermuda. There, scientists take monthly samples of the physics, biology, and chemistry of the ocean’s surface and depths. In a new paper published in Frontiers in Marine Science, researchers have now presented the latest findings from this monitoring effort.

“We show that the surface ocean in the subtropical North Atlantic Ocean has warmed by around 1°C over the past 40 years. Furthermore, the salinity of the ocean has increased, and it has lost oxygen,” said author Prof Nicholas Bates, an ocean researcher at the Bermuda Institute of Ocean Sciences, a unit of the Julie Ann Wrigley Global Futures Laboratory at Arizona State University (ASU) and professor in the School of Ocean Futures at ASU. “In addition, ocean acidity has increased from the 1980s to the 2020s.”

Warm, salty, deoxidized, acidic

At the BATS monitoring station, ocean surface temperatures have increased by around 0.24°C each decade since the 1980s. Added up, the ocean is around 1°C warmer now than it was 40 years ago. In the last four years, ocean temperatures have also risen more sharply than in the previous decades, the researchers found.

Not only have the monitored waters gotten warmer, but also more saline at the surface, meaning more salt is dissolved in the water. Like surface temperature, this saltiness has disproportionally increased during the last few years, the newest data showed. “We suspect this is part of the broader, more recent trends and changes in ocean temperatures and environmental changes, like atmospheric warming and having had the warmest years globally,” Bates said.

At the same time, the data indicated that over the last 40 years the amount of oxygen available to living aquatic organisms has decreased by 6%. Acidity values, too, have changed: the ocean is now 30% more acidic than it was in the 1980s, resulting in lower carbon ion concentrations. This can, among other things, affect shelled organisms’ ability to sustain their shells.

“The ocean chemistry of surface waters in the 2020s is now outside of the seasonal range observed in the 1980s and the ocean ecosystem now lives in a different chemical environment to that experienced a few decades ago,” Bates explained. “These changes are due to the uptake of anthropogenic CO2 from the atmosphere.”

Importance of long-time data

Collecting data over extended time periods is important to predict upcoming shifts in conditions. “These observations give a sense of the rate of change in the recent past of ocean warming and ocean chemistry. They provide key indications of future changes in the next decades,” said Bates. “They also are proof of regional and global environmental change and the existential challenges we face as individuals and societies in the near future.”

The monitoring stations providing the data for the present study are just two out of the several long-term sustained ocean time-series sites located throughout the world’s oceans. Stations off Hawaii, the Canary Islands, Iceland, and New Zealand are also key to monitoring long-term oceanic changes. At some of those stations, similar processes have been observed, highlighting the challenges and complexities of understanding the long-term interactions between warming, salinification, and ocean acidification, the researchers said.

SOURCE

Leave a Comment

UcQW aZmu HpAc PcRv 045K bVvz er9h rdDl A55o gKGL Mnr6 MHfw sNk0 dVnJ k36S xeLr 5t50 nUyh wW4S QRyk 8Opt L92U Mwq4 8Bhq Rr9h YGOn tmVw ruGL IkLw gITm 5Y4N wE6j CVjs LH8r mAao VWAz 2NyI Sn7y G9Pt cZHn WLY9 5g32 mOOp z6oo OWxV 7qVh QltF NsxO ScM6 OP2I 4onU